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THE TRANSPORT PROPERTIES OF GASES IN 
BURNETT'S APPROXIMATIONt 
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Zhukovskii 
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The relations necessary to calculate Burnett's corrections to the distribution functions of the molecules of multicomponent mixtures 
of polyatomic gases are derived. Effective expressions for the transport properties and "working" formulae for the transport 
coefficients of a binary mixture of monatomic gases and a polyatomic gas in Burnett's approximation ignoring external forces 
are obtained. The transient equations of thermal stress convection of a polyatomic gas are considered and estimates of the effect 
of the rotational degrees of freedom of the molecules on the coefficients of these equations are given. © 2002 Elsevier Science 
Ltd. All rights reserved. 

Supplementing a previous paper [1], we present below results which are of independent interest (for 
similar data for monatomic gas see [2, 3]), and we also consider more completely the most important 
case of a binary mixture of monatomic gases and a polyatomic gas. In the latter case, the general 
equations of thermal stress convection and concentration stress convection [1] are converted to a much 
simpler form. The impulse equation of thermal stress convection finally obtained contains terms resulting 
from Burnett temperature stresses. The results of estimates of the effect of the rotational degrees of 
freedom of the molecules on the coefficients of these terms are necessary, in particular, for analysing 
experimental data [4]. Linear problems of the sound propagation and the structure of a weak shock 
wave in polyatomic gas were solved previously in [5] using Burnett's equations. Unless otherwise stated, 
we use the notation employed previously in [1]. 

1. T H E  E Q U A T I O N S  F O R  T H E  B U R N E T T  C O R R E C T I O N S  
T O  T H E  D I S T R I B U T I O N  F U N C T I O N S  

The system of equations for the Burnett corrections to the distribution functions f~) = f~)cp ~) were 
written in [1] in the form 

Mta = n2R~(¢p(2)), M~ - ~tf~°) + nfa - Lta(f(l)f 0)) (I.i) 
~gt 

The first two terms of the inhomogeneous part M~ of Eq. (1.1) are due to the convection terms of 
the kinetic equation, where Hu is a group of terms expressed in terms of the natural velocities of the 
molecules ci and containing derivative o f f ~  ). As described previously in [2, 3] these two terms are 
represented by three groups of terms. 

The first group depends only on the scalar ci 

¢(0)f 1 ~ j(I) 2 (3  w2_Al~fa +,r(i) 
3pc, ~,2 ~rr :~rr u - 

s b . Jr * (Vu)2 + r'~ + - ~  Jr .F~ + E~ ~r 3c~ 3T Ot 

,zi(a~bT+ ~, D~d)) V U - ~ r . U  (1.2) 
Dr j=, ' 
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The second group consists of terms of an odd power of the vector ci 

aT ( ,( Ci ‘- 
ar 

T a4i +c. 

( aT 
e% vu+ 
1 a$ 1 

+A& ‘[~(~)-(~ei)‘~]-~Ci’~, dj(~~+C:~)V"+ 

+~, D~Ci ‘[~-( ~“).dj]+ 

Finally, the third group contains terms of an even power of the vector ci 

-t(cici : e) $%+Cf3)VucBAcici :[2-2($u).e]+ 

(1.3) 

In expressions (1.2)-( 1.4) we have used the notation [2] for the vector and tensor operations, which 
simplifies a comparison with the case of a monatomic gas and the use of integral theorems [2,3], but 
instead of p(l), co, &, V the corresponding symbols [l] 2”‘, u, e, Vu are retained. In the first (Navier-Stokes) 
approximation for the transport properties we have, similar to the traditional approach [3] 

h”’ = -1’ 5 - pC D,di, .q”’ = ho) + 
i 

Here S is the unit tensor. Relations (1.5) define the transport coefficients of the Navier-Stokes equations 
used previously [l]. The third term in the expression for Mo contains the collision operator LQ. 

A knowledge of the quantity&) is also necessary when considering the super-Burnett approximation 
and in the theory of a kinetic (Knudsen) layer. To determine the Burnett contributions to the transport 
properties we do not need to calculatefg); it is sufficient to calculate certain moments of the operation 
Mn, which is expressed in terms of the Maxwellian fg) and 
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1 .(o)( A alnT s ) 
:g' = - ;  L. y + r .v . .  - 

aT  s , j  
=- Aacia ~r + @ciac,~e=o + Y. D~i ciadja + FaVu (1.6) 

j=l 

In expression (1.6) and below, unlike (1.2)-(1.4), we use the component-wise form [1] of the vector 
and tensor quantities and the usual rule for summation over repeated subscripts. The components of 
the radius vector r are introduced by the subscripts a, [3 and y, and the operators 

= ~u,/ ! 
_38a13Nrt,/ e~  \3rl ~ / ar~ (N=o)=~(Na~+Nf~) Iau=\, Vu= (1.7) 

2. THE FIRST APPROXIMATION FOR A BINARY MIXTURE OF 
MONATOMIC GASES 

We will give the information required to transfer from the general case [1] to the case being considered, 
and the results of the first approximation which will be required later. The latter is dictated by the need 
to write expressions for the partial transport coefficients in a form convenient for use (the overall 
transport coefficients of the mixture of gases occur in the Navier-Stokes equations) in the approximation 
assumed earlier [1] in terms of Sonin polynomials, relating these expressions to the data in the most 
quoted book [3]. In the case of a mixture of monatomic gases we must put Ya, c~ equal to unity in the 
formulae in [1], put ca, AEa, cvi, Fa, H, ~, kvi equal zero, and replace the subscript ~2 by i. We then 
obtain 

1 mic2i, ~'t'i = ~ "tar l=rta[ ~, E 7= kT, U=-~ 

In the case of a binary mixture Xl + x2 = 1, dla = --dea, therefore, for example 

2 a D / .  ax, a ~  i ax I D/dja=~id'a' Y" ~xk dJa"~r~ =2"~xl d'a Or, (2.1) 
j= l  j,k--I 

~ i = D ] - D ~ ,  i=1,2 (2.2) 

Then, instead of (1.6), we obtain 

f/(I) = _ f/(0) Aieict ~ +  Hicic~c,~je~j + ~icictdlc t ~ 
3ra 

• 3 T  , 
-- Aicia ~ + B~cictci[~eo~ + ~ c i a d l a  (2.3) 

ar,~ 

The Chapman-Enskog method gives series for the stresses, the diffusion rates and the thermal flux 

- + + = + + . . . .  = -  

qa = q~) + q:2) + .... qa =ha + 5 P , [  l - m--'!L]Vla (2.4) 
z [, m2 J 

The first terms correspond to the Navier-Stokes approximation and the second terms correspond 
to Burnett's approximation. We have used the following notation: m i and n i are the mass of the molecule 
and the number density of the ith component of the mixture, k is Boltzmann's constant, T is the 
temperature and u is the mean-mass velocity. Moreover 

2 
Pi = mini,  xi  = n i ,  Pi = nikT, ( n , p , p ) =  ~'~ (n i ,P i ,P i )  (2.5) 

n i=l 
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(1) nap = -2qe4 (?j,h’)= ;f O)ivAI> (2.6) 
i=l 

v”’ = m2” 
la -- 

XlP 

kT =% 

9442 

h”’ = _-)Li?+ &k,_v,;‘, a 
ara 

h = A’ 

P2 

(2.7) 

(2.8) 

By definition [l] the partial coefficient of viscosity and thermal conductivity are given by the formulae 

rli = $ kTXibi,O, hl= ; kriai,, 

where bi,a and ai,i are the coefficients of the expansions in Sonin polynomials [3]. However, it was 
previously assumed [3] that rk is the coefficient of viscosity of the gas of sort i. To eliminate the confusion 
we will denote the first approximations of the coefficient of viscosity and thermal conductivity of a 
monatomic gas of sort i in terms of Sonin polynomials as follows: 

(2.9) 

Here and below sL(‘.‘)* and Qp)* are the reduced Q-integrals for a gas of sort i and mixtures of gases 
respectively, cri is the diameter of a molecule, and the brackets [ In indicate the number (n) of the 
approximation in terms of Sonin polynomials [3]. To economize on space these brackets will be omitted 
as far as possible. / 

On changing from relations (115) to (2.7) and (2.8) we took into account the following formulae, which 
express the diffusion coefficient Dii and the thermal diffusion coefficient Dn of a multicomponent mixture 
in terms of the diffusion coefficient L.& and the thermal diffusion coefficient QbT of a binary mixture 

0 
2 

42 =D2, =- 
n - 
P 

m,m29J,2, 

kn,DT, = CO,%, 
n2k 

CJI~ = (-l)i+’ -m,m2 
Vi 

(2.10) 

In formulae (2.10) and henceforth in (2.11)-(2.14) the subscripts i and j take the values 1 and 2, where 
j f i. 

We will now change to approximate expressions for the transport coefficients. For Bi we will confine 
ourselves [l] to the first approximation in Sonin polynomials 

&Vi Bi z - 

x,(kT)2 ’ 
qi z [rlill (2.11) 

where, taking expressions (2.9) into account 

rli = r7~XiA~(l~ -f,), A11 = 1221,, -f,,f,, 

For the quantities I, using formulae (7.3.80) from [3] we have 

(2.12) 

f, =xi +2xjq;M,M2 

fii = -2Xjllfi M, M, ; M,=x 
1111 +m2 

(2.13) 

We will denote byA*, B* and C* the ratios of the reduced Q-integrals [3]A&, B& and C,*, respectively, 
equal to unity in the case of molecules (elastic spheres). For Maxwell molecules A* = 1.29, B* = 1.25 
and o = 0. The quantities 
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, =  q~ , X~. (2.14) 
110 [qOh ' )c° = [XO]~ 

5nmiMj [~/)h, [X/j]l = 15k [rlo]l 
[rIO]l = 3A* 8miM j 

(2.15) 

where [~i]]1 is the diffusion coefficient of a binary mixture in the first approximation in terms of Sonin 
polynomials (formulae (7.3.38)[3]). The reduced integrals and the quantities A 1"2, B1"2, C~2, ~_rlij_ll, L~ijJl, 
~ij are independent of a permutation of the subscripts. 

Approximate values of the Burnett transport coefficients were obtain earlier [1] in the second approxi- 
mation in terms of Sonin polynomials forAa, D~. In this approximation, taking relations (2.3) and (2.10) 
into account and henceforth omitting the bracket [ ]2, we have 

2m i ['5 _ -~ .~S~½(w?)]  
A, = ~ L-~ O~ i ~ r  (2.16) 

Oi I - O i  2 -- (Oi I kn i ~ 2 ,  ~'Yi = ~li - ]t2i (2.17) 

For the coefficients occurring in (2.16) and (2.17) we obtain, using well-known results [3] 

~12 ----" [~2]1 A =  , c = 6 C * - 5  (2.18) 
I - A  ' 1003 

= k r ~  2, k r = x, x2ok r, k r = - - ( S , x  I - S2x 2) (2.19) 

nk P3 k'  = k + kr2~2 (2.20) 
~. = [~'12 ]l --,03 XlX2 

In relations (2.18)-(2.20) and (2.22) the functions P3, 03 and R 3 are trinomials of the form R 3 = Rlx  2 
+ R2 x2 + R12xlx2. The coefficients 

, * 4A._.....~* ( ~ . + ~ , 2 ] + 1 1  12B* 16A* 
R I = QI)~I, R2 = Q2)~2, RI2 = 5MIM 2 - '~"  --~-  (2.21) 

The coefficients $1, $2, P1, P2, P12, Q1, Q2, and Q12, are given by formulae (7.3.70), (7.3.43) and (7.3.44) 
from [3] respectively. 

For k~ and 5Yi it is convenient to use the following formulae (see, for example, [6]), expressed in terms 
of (2.9), (2.14), (2.15) and (2.18)-(2.21). 

, . n 2 
ki = 9 / x '  + (-1)' 5 n ( m l  + m 2)kxlx2kr ~ 2 (2.22) 

P P 

: [ ~ i  = -  5 p m i ~ 2  2kr +(-1)i P3Mi ] 
xiM1M2Q3 J 

(errors which occur in [6] have been corrected). 
In the first approximation (accurate for Maxwell molecules) we have kr  = 0, ~ i  = 0. In the case that 

is linear with respect to kT we have ~.' = ~.. 
External forces are ignored below. Then 

dl~t = ~x I + n ~ In p (2.23) ~ra x l x 2 ( m 2 - m l ) P  ~---~a 

Oodl  5 

3 
_ _ 

Dt =--ff-r'~ra dlf~- x l x 2 ( m 2 - m l )  n Or s 
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3. T H E  C O N T R I B U T I O N S  OF B U R N E T T ' S  A P P R O X I M A T I O N  TO 
T H E  T R A N S P O R T  P R O P E R T I E S  OF A B I N A R Y  M I X T U R E  OF 

M O N A T O M I C  GASES 

The formulae derived earlier [1, Section 4], were obtained from the general formulae with the thermal 
diffusion and barodiffusion effects ignored (a = 0, d l =  VXl). We will derive both accurate and more 
complete approximate expressions. We eliminate Vx2 and d2 and take into account relations (2.1)-(2.5), 
(2.10), (2.16), (2.17), (2.22) and (2.23). 

For the contribution to the stress we obtain 

r. / D (I Dp~ Du, Du, t Dua)+~,(e~e,l¢)+ 

+ ~ , ( ~ ) + =  /ar ar\+= /Dp ar\+~ /ad,~\+ 
"\Wl 

~Dr(. Dx, . D,, . .  
(3.1) 

Here and below we have only taken into account those of the coefficients with an asterisk [1], that 
are moments of Li(fO)fO)), which are non-zero in the case of Maxwell molecules. An approximate 
expression for 8~2 is given by formula (4.4) in [1]. the remaining coefficients result from the convective 
part of Eq. (1.1) 

i 

~, = _ 2 1 T ~ + c 2  i DB~ 4 112 (7  . "~ 
' t o ,  pc? J. = y~ 7 7 ! , 2  - ° r n ' )  

2n , 8 c2 as/' l 
~= = {B/}n -- Y.--~- i g, = - 7 [  ; Dc~jn =4{= 

, 4n~ =z .7+~;~  
~4 = {Ai} n = ~' 5 Pi ¥i.  ¥i  

= ~ DA: ~ 4 "qi DV i 2 f DA: 1 = 
~ '  t Dr j. = y s p, Dr' ~6 = p De? J. - y  ~.o,~pp, 

• O')i ~ i  
g7={~i}n=Y. 2niX. :gi=~nig2 n 

(3.2) 

~8 [ DX, J. ~" y" Pi DX, ' ~9 L Dr Jn = £ r Dr 

2 fD~; l  2mi'q i = 2fD~'~ = ~, 411 i D(ni~ i) 
~ , 0 = ~ [ D c ? j . q  ~-~' .  pkPi (°i~2,  Ell tDx, J.  n, Dx, 

In relations (3.2) and below the first expressions for the coefficients ~, % 8 are accurate while the 
second expressions are approximate; the latter are obtained within the framework of approximation 
(2.11) and (2.16). The summation is carried out from i = 1 to i = 2, and we have introduced the notation 
8rN ---- D In N/D In T. 

In the operators { }n, { }7 determined previously [1]), f2 must be replaced by i. 
The expressions for the contributions to the vector transport properties can be combined as follows. 

We will denote these contributions by 
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A<2 =~>, 

[3u +~XlX2(m2_ . .~v,, i  r ~ . ,  . ] 
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(3.3) 

The coefficients q0 m ( m  = 1, 2,..., 9) are given by the expressions 

% 
3 t J,, ,~,,p, L ~ , , '  

• = ~ 4mi tlJl),l, i J0),, ~ x (3.4) Ip2 =-2{Ai}9 -~,.--7"-~vi "'i-~'i '~'i'~TJ 
aKpi 

2 f , 2 2 OB[] ,~. 4mfq i b(i) 
% = - ~ B ;  + - c  i ..4-~_2~ = - 

P t 5 ~C i j, .., 5pkp i i 

2 f 2fOB; OA; ~] 

~, = ~ l < , t ~ + ~ )  I -- 
~ - . 4 1 ~ / f / . ( I ) ~  , . r 7 , 2 . ~  x A(O)~ ,in . , _ m i r 7 l ,  o ) l , _ ( b [ O ) _ b , l ) ) t o i ~ r ] t  
Z.,7"--'lt/i UTt~ qi#--ui  UT'li T ~"7"~-1"~''i "*i JJ DPi t Kill L ~ 

= V  41qi thO)-b~ °)) 
5kn~ 

q~6 = - T + ci  "-~7T_2 ~ = 
oci j~ 

= + 

.Sg [ rn i k .:! / 

4 f ~ ~B;} _- I;_3_8 ~n, (b~')-b~ °)) 
: - -  C i ~  ~ X  I " 

4 [  2o3~1  ,~, 4mi (O)i o. ~ ti, t l )_bf fO))_7 b~l)~,yi ) 
~>, =-~l  ~, ~ j > : - ~ t ~ - , ~  TM' 

The factor o~i is defined by the last expression of (2.10). 
In order to obtain relations for the contribution to the component  of reduced thermal flux h~ ), we 

must make the replacement 

A(~ ) "-~ h~ 2)' { }9 "~ { 1-¢, qlm --4 ¥ . ,  (3.5) 

(the quantity ~ is given by formula (4.4) from [1]) and put 

b~ °) = - 5 0 i ~ T ,  b~ i) = ~,~ (3.6) 
z 
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To determine the contribution to the component of the diffusion velocity Vt 2), as in (3.5) we must 
make the following replacements 

V,(2), A(~ ) ' -)  m { }q,~{ 1~, qo .~5 ,~ ,  g ~ ; ~ 0  (3.7) 

When calculating the transport coefficients in the expression for Vt~ it is more convenient, using 
formula (1.24) from [1], to obtain the corresponding formula for the difference in the diffusion velocities, 
and then use the relation between them. As a result we obtain 

Vl(a2) = 02 rE(2) P2 t I. --!/(2)~-- Y. I ac, (3.8) 

Hence, the operator has the form 

2kT ~, NP2 ~iw?de i (3.9) 
{N}8 = - 3 " ~ "  I ni p 

instead of (2.16) from [1] (in which there is an error: the extraneous factor N is included under the 
integral). 

Finally, instead of (3.6), when calculating Vt 2) taking (3.8) and (3.9) into account, we must put 

b(°) 5p20~i ~12, b(I) 5P2Xi 
= - 2pp = -  2nTp 8yi (3.10) 

Hence, the approximate values of the Burnett coefficients in the components of the diffusion velocity 
Vt 2) can be calculated using formulae (3.4), (3.7) and (3.10). 

We emphasize, that despite the differences, we have retained here the notation for the transport 
coefficients ~-~m, Ym and 6m [1]. In expression (4.5) of [1] for ~3 we must put 92/01 + 1 instead of 
P2/Pl - 1. 

The formulae in [1] for a binary mixture follow from (3.1)-(3.10) if we put ~ r  = 0, 8Yi = 0, di = Vx 
in them. 

4. THE C O N T R I B U T I O N S  OF B U R N E T T ' S  A P P R O X I M A T I O N  
TO THE T R A N S P O R T  P R O P E R T I E S  OF A P O L Y A T O M I C  GASES 

The contributions to the scalar part of the stress tensor, divergence-free stresses and the heat flux here 
take the form 

FI (2) = (0 h + m~)e~el~ +o~272T+(~3 + m;)(VT) 2 +(co 4 + ro~)(Vu) 2 - 

[ O ¢1 c-top~.t OU~Ou ~] I Op aT 

= ( ~  " V O 1 De buy Ou r 0u. ) 
+ 0rp 0r. t +(~3 + ~ ; ) e ~ e #  + 

(4.1) 

/ 

. 0 T v u + 2 7 2  ) 0r a 0rpJ p 0rl~ q~2) = (y~ + y~ ) 0r. 

(4.2) 

0e~ 0Vu 
"1-(74 + 74 ) 0rB0-'-T-T ella + 75 W + 71o 1 0p Vu + 7 1 2 p  0ra 0ra (4.3) 
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The coefficients with an asterisk occurring in expressions (4.1)-(4.3) in the case of a monatomic gas 
are small and will be neglected [2]; as confirmed in [7], they are also negligibly small for classical models 
of molecules with rotational degrees of freedom (rough and loaded spheres). In general, this conclusion, 
of course, needs to be checked. The general approximate expression [1] for the coefficients without 
asterisks reduce to the form 

2 o~ =-hr.,, (o2 =~(x,-o~ ) 
P P 

;rax, T2 ~_.~_( ~_~.. T-21 l _ ok t ~  3 

,,,, : I5_+o2 
p t 2  k 

: 3 ;) 

p 5 p  
F= s = 4 "q ~ ' t  - 5 p 3 T '  ~6=0  (4.4) 

4m 

~ll = 15pkc~ 
+ 

+-~{ ~'3~(;rb+~'tl-°o~(;or-')j-~'°±<(~o)@+2m(2 J 3kp[,5~.,+2c v5k~) 

_ _ 2 m ( z  " . 5 k ,2)  72- 5kpL , ' v - ~ V ~ ,  Y3=-4rn~z'5kp 

= ~  kt3r(T rl)+~Xv + + Y, 5p ~t,5 ' 7~- 

4fix t m ~-k 
Ys= 5kn '  'Yl°=-'k"T Y12' "h2= ( X t - ° ~ )  

O = ~ ,  ~=  
2co 4 kz 

Hence cv is the heat capacity due to the internal degrees of freedom of the molecules at constant 
volume, the operation (...)c was defined previously in [1], expressions for a and ~ are given corresponding 
to known results [5, 8], and Z is the characteristic ratio of the relaxation times of the internal and 
translational degrees of freedom of the molecules. The dynamic coefficient of viscosity "q in many cases 
differs only slightly from the case of a monatomic gas, and hence the translational thermal conductivity 
~,t, the internal thermal conductivity ~v and the overall thermal conductivity Z can be conveniently written 
as 

(~. t .~ .~. )=~RTI(A,  Au.At). A z = A t + A , , ,  R = k  (4.5) 
m 

For a monatonic gas At = AX = 1, Av = 0 
In the widely used Mason-Monchik approximation [3, 5, 8], the coefficient q is the same as for the 

corresponding monatomic gas, while for the thermal conductivities we have [5] 
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A , = I  - A ,  hv =2--~-~(l+A) 
O DG 

A ;  5 13 I nZt ,2  13 = ~-~ (p(Z) = 1.328q0(Z) (4.6) 

Here ~ is the self-diffusion coefficient of a monatomic gas. 
We will consider in more detail such diatomic gases as nitrogen or oxygen for those values of T when 

only rotational degrees of freedom of the molecules are excited. Summation over the rotational quantum 
numbers co -- J in the formulae for the mean values (...)c can be replaced here by integration over J 
(the quasiclassical approximation, J >> 1). Following, for example, the well-known approach in [8], we 
obtain 

3 
Cv =k , G=~, ((AI~co)3)c=2 

The characteristic ratio of the rotational and translational relaxation times is given by the approximate 
Parker formula [8] 

Z=Z** 1+ 0 K +  +2 0 , 0=-~- (4.7) 

where T, = 91.5 K for nitrogen and T, = 88 K for oxygen. For nitrogen the values Z ~ = 18-22 correspond 
to the range of experimental data. The ratio q0(Z) of the coefficients of self-diffusion of a diatomic and 
a monatomic gas for small Z, occurring in the last formula of (4.6), differs considerably from unity. 
This difference can be estimated using Sandler's formula [8] 

~0(Z) = I + 0.27Z -I - 0.44Z -2 - 0.90Z -3 (4.8) 

5. T H E  E Q U A T I O N S  O F  T H E R M A L  S T R E S S  C O N V E C T I O N  
O F  P O L Y A T O M I C  G A S  

Following the approach described earlier [1, Section 5], we will write the variable part of the total stress 
tensor, which will occur only in the momentum equation and in the expression for the surface force, 
in the form 

p08p 8c@ + x~  = XS~ + Rn~ (5.1) 

X= poSp-~Vu+co2V2T+ (co 3 + co~)(VT)2 + 2 r iVu_ 3 ~4 V 2 T _ / ( ~ ,  + ~;)(VT)2 

( ~ua auf~ ~ a2T +(. -, aT aT 

We recall that in the case considered 

_ v 0  u~Vo, VO=~o L, P=Po(I+SP), Po=const, 8p=O(Kn2), Kn- R~o 

the gradients of T are of the order of unity, the zero subscript denotes characteristic values, 8p is the 
relative variable part of the pressure, L is a characteristic dimension, and Knudsen's number Kn ,~ 1.t 
Terms of the Chapman-Enskog expansion of the order of Kn 2 compared with those written down are 
ignored in relations (5.1). 

tThe structure of the transient equations of thermal stress convection of a polyatomic gas have been considered in the following 
paper: GALKIN, V. S., KOGAN, M. N. and FRIDLENDER, O. G., Thermal- and diffusion-stress phenomena. In Proceedings 
of the Fourth All-Union Conference on the Dynamics of Rarefied Gases and Molecular Gas Dynamics.Izd. Otdel TsAGI, Moscow, 
1977, 321-322; however, the non-physical assumption was made that P0 is a specified function of t, which complicates the equations. 
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The specific feature of the problem is such that X is a new gas-dynamic variable, the data on the 
structure of which are not needed. In the expressions for o and 5 we have putp = po, so that they depend 
on T and are independent ofp. Hence 

For the final formulation of the required equations we refer the quantities u, T, p, TJ, X, r, t to V,, To, 
po, qo, Vg, L, L/v0 respectively, retaining the previous notation as the dimensionless variables. We will 
neglect terms 0(Kn2) compared with the unity and take expressions (4.5) into account. The equations 
of state, continuity and energy take the form 

pT=l, y=v, 

,?i’Vu = V(r&VT) = 4 5 c, y(VTj2 +qA,V’T, E=- -+- 
( 1 152 k 

(5.3) 

(5.4) 

The derivative with respect to t in energy equation (5.4) is eliminated by using the second equation 
of (5.3). 

The temperature stresses can be written in dimensionless variables in the form 

(5.5) 

Taking relations (5.1)-(5.5) into account, the divergent terms in (5.2) a/&,[. . .] are combined withX 
while V T is eliminated using relations (5.4)) we transform the momentum equation 

W=X+a,fi+X,(VTj2 
Mz 

1 
X, =- da, 2al drib 

2 
a,+.--- 

dT qh, dT ) 

da 
-----$+&(a2 -%)$), fJ, =%-a, 

(5.7) 

An equation for the momentum for monatomic gas of a similar form was previously obtained in [9] 
(incidentally, we have corrected errors here), where F is the dimensionless external force [l]. We can 
formally assumepo to be a known function oft [lo], in which case the equations of the thermal stress 
convection have a more complex form. 

In Eq. (5.6) W is a new dependent variable. The inclusion of certain terms of the divergence of the 
temperature stresses in the expression for W leads to the fact that the order of the equation of the 
momentum does not change when these stresses are taken into account. 

We will analyse the effect of the rotational degrees of freedom of diatomic molecules on the 
coefficients of Eq. (5.6), expressed in terms of Burnett’s transport coefficients. As in Section 4 we will 
omit 5; (see (4.2)). Using expressions (4.4) for &, and 5s and formula (4.5), we obtain 

a, = 3n2A,, hlA a2 = 3qd 
dT (5.8) 
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We will use approximation (4.6) assuming o = 3/2 and using formulae (4.7) and (4.8) with 
T. = 9.15 K. We will assume that the dynamic coefficient of viscosity is independent of the rotational 
degrees of freedom of the molecules and is power function of T, i.e. r I = T s. Then, taking relations 
(5.7) and (5.8) into account, we obtain 

~ ( 2Tdln A' ] XT~I'3S XT=A' I ' t ' T - I~  A ~  

)IT = - 3S T 2 s - 2 y ~  ", 
2 

U T = 3sT2S-Iu~ ' 

A,) 

U~ = A, 

(5.9) 

In the case of a monatomic gas X~- = ¥~- = U~- = 1. The coefficientsXr and Yr are the most important 
in the theory of thermal stress convection [9], but they depend in a most complex way on the 
polyatomicity. The results of calculations are shown in the figure, the continuous curves corresponding 
to to = 1 and the dashed curves corresponding to the relations to(Z) from formula (4.8), where the 
numbers 1 and 2 are for values of Z = = 18 and 22. For X~.(T) we assumed s = 1, which holds for 
low T. 

The value of tO is found to differ from unity at low temperature T ~< 200 K. If tO(Z) has a variable 
value, the effect of the rotational degrees of freedom of the molecules manifests itself to the maximum 
extent for the X~-(T) and X~-(T) curves. The dependences on T obtained can be qualitatively explained 
by the fact that as T increases the value of Z increases, and the so-called Euken approximation becomes 
valid, when the temperature stress coefficients are given by the expressions for monatomic gas, i.e. X~, 
Y~- and U~- approach unity [1, Section 3]. 

Hence, the effect of the rotational degrees of freedom of diatomic molecules (nitrogen, oxygen, etc.) 
on the coefficients of the terms of the equations for thermal stress convection, resulting from Burnett 
temperature stresses, is considerable at low temperatures (approximately up to 10% at T = 100 K). 
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